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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-I085

EQUATIONS FOR THE NEWTONIAN STATIC AND DYNAMIC

AERODYNAMIC COEFFICIENTS FOR A BODY OF REVOLUTION

WITH AN OFFSET CENTER-OF-GRAVITY LOCATION

By Robert C. Ried, Jr., and Edward E. Mayo

Equations which are easily adaptable to machine computation are presented

for the preliminary prediction of the supersonic and hypersonic stability

characteristics of bodies of revolution with an arbitrary center-of-gravity

location. The equations have been programed and an example of their application

to a blunt reentry configuration is presented.

INTRODUCTION

The Newtonian theory has proven to be a useful tool for the preliminary

prediction of supersonic and hypersonic stability characteristics. A general

background in the application of the theory may be obtained from references i

to 4. The machine computation of the Newtonian static stability characteris-

tics of bluff entry bodies with various heat-shield curvatures, afterbody

angles, and corner edge radii is in agreement with experiments on Apollo type

reentry configurations. (For example, see ref. 5.) Since entry lift-to-drag

ratio may be obtained by offsetting the center of gravity, the program was

extended to the computation of both static and dynamic coefficients for bodies

of revolution with an offset center of gravity at angles of attack, angles of

sideslip, and angles of roll. The purpose of this paper is to present equations

which are readily machine adaptable for the computation of the Newtonian static

and dynamic aerodynamic coefficients for a body of revolution with an offset

center of gravity at angles of attack, sideslip, or roll, or any combination

of these angles.



SYMBOLS

A,B,C,E,F,G

Cc

CD

CL

C_

C
m

CN

C
n

C
P

Cy

C I ,Cn ,Cm
p r q

d

;x

3

defined algebraic expressions

4Fx
axial-force coefficient, _d2q _

drag coefficient, (4)(Drag)

_d2q_

lift coefficient,
(4)(Lift)

_d2q_

-%
rolllng-moment coefficient, _dSq _

pitching-moment coefficient, _d3q _

%
normal-force coefficient, --

_d2q_

-%
yawing-moment coefficient, _d3q _

2mr
Newtonian pressure coefficient, \V_/

4Fy
lateral-force coefficient, _d2q _

roll, yaw, and pitch damping coefficients

characteristic diameter

axial force

lateral force
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i,j,k

T,/D

M

MZ
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---> -..> _--->

P,Q,R

p,q,r

%

R

vN

V
co

X,Y,Z

x,y,z

Xo, Z0

B
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normal force

unit vectors for body coordinates

lift-to-drag ratio

Mach number

rolling moment

pitching moment

yawing moment

unit vector normal to surface, positive inward

surface vectors in roll, pitch, and yaw planes

roll, pitch, and yaw rates about body-axis system

free-stream dynamic pressure

body radius

relative velocity_ normal to surface

free-stream velocity

body coordinates

distance along body axes

center-of-gravity coordinates

X

lower and maximum integration limits for

angle of attack

angle of sideslip

surface slope from body axis, _(d)

cylindrical coordinate angle
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_i' 82

ea_

P

¢

flow-see boundary limits

body afterbody angle

radius vector for cylindrical coordinates, p(x]

roll angle

Subscripts (see fig. 4):

a,v

c

c_a

n

n_c

v

v]f

afterbody - vertex juncture

corner edge

corner edge - afterbody juncture

nose

nose - corner edge juncture

vertex

vertex radius

DEVELOPMENT OF EQUATIONS

The Conventions and Basic Relations

The vector directions used in this paper are found in the diagram of

figure 1. The respective yaw, pitch, and roll rate vectors (see fig. 2) are

r = -r_ (la)

-+ .-+
: qj (ib)

--) -->
P : -m (ic)

The surface vectors normal to their respective rotation axes (fig. 2) are

_-(X-Xo)_- p cos0__ (2a1

( (. x-x 0 i + p sin e - z0 k (2b)

#+,_ - p cos e_+ (p sin e - Zo)_' (2c)
,...,,
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The inwardly directed unit vector, normal to the surface, is

--9

__n_- sin 5_+ cos 5 cos 0_ o cos 5 sin e_
Ini

The unit free-stream velocity vector from figure 3 is

GO
= cos m cos _- (sin c_ cos _ sin _ + sin _ cos _)_

+ (sin c_ cos _ cos _ - sin _ sin _)_

(3)

(4)

The relative velocity, normal to the surface_ may be expressed as

--9 "-9 -9 -9

% n -9 n -9 _ _nl -_ nVN = ._i- p X_.[_ - q × • - r X _. _]

is

The local surface pressure coefficient, according to the Newtonlan theory,

=2'"IV_ =2(Ac°s 0 - Bsine +c)2 (6)Cp

where

A = - cos 5 in _ cos _ sin _ + sin _ cos _ - V\d tan 5 + V_

B = cos 5 sin _ cos _ cos ¢ - sin _ sin _ + V\d tan 5 +

C = sin 8 os _ cos _ +V_

The coefficients may be expressed as

Cy --_ _ Cp
1

6

(7a)

(Tb)
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4
CN = .

PC
d p

(7c)

(_ e2

i

p Zo
_ C

d d p
cos e de d(d ) (7d)

C
m _,x _ _C_L_ ) Zo+ _ tan sin e - tan 5] de d(d )

(7e)

C
n

(_ _ /x_xo
+_tan_)COS (7f)

Cz = -_-
P

(7g)

C =
m d
q

(7h)

C = --

nr d

(7i)

Flow-See Boundary

The flow-see boundary is given by the integration limits

X

established at each _ station.

?

eI
and

e2



For

5 - cos-l(cos a cos _) _>o,

and

x

0 _ cos'l(cos _ cos _) _ _ and all values of

8 __3_
2 2

where

x

The upper limit of the integration with respect to

where 6 + cos'l(cos _ cos _) = 0.

is given by the condition

-1 x
For _ < cos (cos _ cos _) _< _ and all values of _ where

+[_- cos-l(cos_ cos_)]_<o,

eI - -

and

x

The lower limit of the integration with respect to _ is given by the condition

where 5 - [_ -cos'l(cos _ cos _)] = 0.

X

For values of _ not included in the above two paragraphs,

are found by setting the pressure coefficient equal to zero.

81 and 82

(8)

and

82.cos-l<A2-Ac/ A2c2

.sin-l_B° _B202 _-_)+B2- +B2)2+A2+B2 6
(9)



Coefficients

Substitution of the pressure coefficient (eq. 6) into the coefficient

equations (eqs. (7a) to (7i)) enables an integration of the coefficients with

respect to the coordinate e. The resulting coefficients expressed below

require only one integratlon with respect to the axial coordinate of the body

selected. For other then simple bodies the coefficients may be obtained by a

machine integration for each combination of _, B, _, p, q, and r.

CC = _ _ tan 611(A2 + B2 + 2C2)(e 2 - el)

(10a)

i i 2el)+ AC(sin 2 e2 - sin 2 el)-BC(e 2 -e I -_ sin 2e 2 +5 sin

(ZOb)

(i0c)



d d
C_ -- -

1 1 281)

C
m

(lOe)

C
n

4-

82 - sin 3 el)

- BC( sin2 82 " sin2 el)

i

(A2 + C2)Isin 62- siu el)+ ACI92" £i +3 sin 202

l 2%)-2 sin

(lOf)

iO

9



= _ rd + pd (sin 82 - sin 81C_ I cos2 5 +E_ V_°

+

i s ln3 82 + i )3 Y sin3 el

_ )sin 282 - _ sin 281

-_- + cos _ cos _ e2 - eI

(lOg)

C
m

q
+o>C.o. 

- 2 an 2 6 d \Vco -d- + cos c_ cos _ + qdv_E2 + E cos e2 - cos e

zo (_vzo r_)(_)+ -_- tan 5 pd --d + F + E sin2 e2 - sin 2 e

t. zozo )(V_ _- E + -_- G + E cos c_ cos _ 82 - eI - _ sin 2e2

+_ =_=2e_-y _ _-+F+_ _ =_n3e2 -_n3e a(_)

zo ( zo+ _ d -d- sin 5 cos 5 tan 2 5 qd E2 + EG + 2 d/\V_ -d

+ COS m COS e2 - 81) - _ E(v-_dE + - sin 281

z0 (<zo r_ _)+ 2 _- tan 5 pd + F + E _.-r-h(sln82 - sin 8d v_/\

+ 2 tan 5(2 qd zO Zo G)I )Vo° -_- + E + E cos c_ cos B +-_- cos 82 - cos eI

(F rd pd zO_/ " 2 2 1)-E +_E+v_ ' II-i-)t =_n e2-=_n e d(1)
(lOh)

lO



C
n
r

2
COS

2 16 (sin e2 - sin 81 - _ sin 3 82

+71 sin 3 8 E_ + F +vrd pd + tan 5 e2 - 81 +3 sin 2e I

i sin 281)(cos _ cos _ + qd %)+3(cos3 82-2 V_

(zoi)

where
x-x 0 p

E--2--+_t_ 8

F.- (sin_cos _ sine+sin _cos ¢)

G = sin @ cos _ cos _ - sin _ sin

TYPICAL APPLICATIONS OF EQUATIONS

The body force, moment, and damping coefficient equations have been

programed on an IBM 709 0 computer. The typical blunt reentry configuration

geometry, as presented in figure 4, has been programed into the body coeffi-

cient expressions. The body equations for the configuration shown in figure 4

are:

For
X

0 <x<-A_
--d-- d

then

(lla)

and

/2
(ilb)

ll



For

then

and

x X

n,c<x< c,a
d --d-- d

P 1

d 2
_ __qc+

d

X

5 = tan -1

X
C X

d d

(12a)

(z2b)

For

then

and

x x

c,a<_x< a,v
d --d-- d

f
-- - - tan _ead d

_ = - e

(13a)

(Z_o)

For

then

and

x x

a,v <x <_Z
d --d-- d

13

(14a)

(i_b)
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R
n

A computed case for a typical blunt reentry configuration with d - 1.2,

R R

v 0.! is compared with theory in figure 5._ 0.05, 0a = 33 °, and _- =d

The constants for the configuration shown in figure 4 for this case are:

R R
n c

-- -- 1.2 -- = 0.05
d d

R
33 ° v

(_a d--=O. 1

x x

n,c _ 0.09568 __c = O. 1417
d d

x R

c,a 0. 1689 c,a . 0. 4919
d = d

x x

a,v 0.7973 v 0.8428
d = -d-=

x

v,r - 0.7428
d

DISCUSS ION

Typical Application

Results.- Generally good agreement with experiment was obtained for both

the static and dynamic coefficients, as shown in figure 5. The experimental

results for the static coefficients were extracted from unpublished data

obtained in the 21-inch hypersonic tunnel of Jet Propulsion Laboratory,

California Institute of Technology. The experimental results for the dynamic

coefficients were taken from unpublished data obtained in the Langley Unitary

Plan wind tunnel.

Approach to indeterminateness.- Some of the expressions, as presented,
are invalid where the body surface ls normal to the body axis of revolution

P
because of the appearance of the _ndetermlnate form _ tan 5. These points may

be singularly evaluated or values may be obtained by extrapolation. For the

x the value of _ tan 5 isexample configuration as _ -_ 0 -_ O, tan 5 _ ,

13



R

which may be substituted into the expressions. However, for the compu-
d

tations in figure 5, when applicable the integration was started and stopped
x

0.0001 _ interior of the points where the body slope is normal to the body of

revo!ution_ hence, avoiding the indeterminate points.

General Application

Choice of stagnation point coefficient.- All the coefficients computed

from the presented equations may be modified to correspond to the actual

stagnation point pressure coefficient by multiplying the computed coefficients

by the ratio of the actual stagnation point pressure coefficient to the

Newtonian value (2.0).

Extension of application.- It may be noted that the expressions in this

paper are only as valid as the assumptions of Newtonian or modified Newtonian

Flow Theory. The accuracy of this theory depends on the particular con-

figuration under consideration.

CONCLUDING REMARKS

Equations which are easily adaptable to machine computation are presented

for the preliminary prediction of the supersonic and hypersonic stability

characteristics of bodies of revolution. The equations have been programed

and an example of their application to a blunt entry configuration is given.

Manned Spacecraft Center

National Aeronautics and Space Administration

Houston, Texas, January 30, 1963
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Figure 3-- Free-stream velocity vector.
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C
m

.l(

CN .4

CC

o Unpublished experimental data 0.24 -0.059

--Modified Newtonian by methods .24 -.059

of present report

-I'Co 20

Angle of attack, _, deg

(a) Static characteristics for M = 9.

2O

Figure 5.- Aerodynamic characteristic of Rn/d = 1.2; Rc/d = 0.05;

ea = 33°; Rv/d = 0.i; entry configuration.
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(9 Unpublished experimental data

Modified Newtonian by methods

of present report

------Modified Newtonian by methods

of present report

Xo/d zo/d

0.366 0

.346 0

.366 -0.059

.6

-On r 2

• O06

.006

-C z
P

.002'

0 20 40 $0 80 100 120 160

Angle of attack, _, deg

i$0 180

(b) Dynamic characteristics for M = 4.65.

Figure 5.- Concluded.
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Unpublished experimental data 0.24 -0.059

--Modified Newtonian by methods .24 -.059
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Angle of attack, a, deg
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Figure 9.- Continued.
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